Home About us Editorial board Ahead of print Current issue Search Archives Submit article Instructions Subscribe Contacts Login 
  • Users Online: 298
  • Home
  • Print this page
  • Email this page
ORIGINAL ARTICLE
Year : 2017  |  Volume : 12  |  Issue : 1  |  Page : 1-14

Development of a nanoprecipitation method for the entrapment of a very water soluble drug into Eudragit RL nanoparticles


1 Research Center for Pharmaceutical Nanotechnology, Student Research Committee, Tabriz University of Medical Science, Tabriz, Iran
2 Research Center for Pharmaceutical Nanotechnology, Department of Pharmaceutics, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
3 Department of Pharmaceutics, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
4 Department of Pharmaceutics, Drug Applied Research Center and Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
5 Department of Pharmaceutics, Faculty of Pharmacy, Tabriz University of Medical Sciences, Zahravi pharmaceutical company, Tabriz, Iran

Correspondence Address:
Mitra Jelvehgari
Department of Pharmaceutics, Drug Applied Research Center and Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz
Iran
Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/1735-5362.199041

Rights and Permissions

Rivastigmine hydrogen tartrate (RHT), one of the potential cholinesterase inhibitors, has received great attention as a new drug candidate for the treatment of Alzheimer's disease. However, the bioavailability of RHT from the conventional pharmaceutical forms is low because of the presence of the blood brain barrier. The main aim of the present study was to prepare positively charged Eudragit RL 100 nanoparticles as a model scaffold for providing a sustained release profile for RHT. The formulations were evaluated in terms of particle size, zeta potential, surface morphology, X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), and differential scanning calorimetry (DSC). Drug entrapment efficiency and in vitro release properties of lyophilized nanoparticles were also examined. The resulting formulations were found to be in the size range of 118 nm to 154 nm and zeta potential was positive (+22.5 to 30 mV). Nanoparticles showed the entrapment efficiency from 38.40 ± 8.94 to 62.00 ± 2.78%. An increase in the mean particle size and the entrapment efficiency was observed with an increase in the amount of polymer. The FTIR, XRD, and DSC results ruled out any chemical interaction between the drug and Eudragit RL100 polymer. RHT nanoparticles containing low ratio of polymer to drug (4:1) presented a faster drug release and on the contrary, nanoparticles containing high ratio of polymer to drug (10:1) were able to give a more sustained release of the drug. The study revealed that RHT nanoparticles were capable of releasing the drug in a prolonged period of time and increasing the drug bioavailability.


[FULL TEXT] [PDF]*
Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)
 

 Article Access Statistics
    Viewed1461    
    Printed65    
    Emailed0    
    PDF Downloaded301    
    Comments [Add]    
    Cited by others 8    

Recommend this journal