Home About us Editorial board Ahead of print Current issue Search Archives Submit article Instructions Subscribe Contacts Login 
  • Users Online: 596
  • Home
  • Print this page
  • Email this page
ORIGINAL ARTICLE
Year : 2017  |  Volume : 12  |  Issue : 3  |  Page : 222-232

Development of dry powder inhaler containing tadalafil-loaded PLGA nanoparticles


1 Department of Pharmaceutics and Novel Drug Delivery Systems Research Centre, School of Pharmacy, Isfahan University of Medical Sciences, Isfahan, I.R. Iran
2 Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, I.R. Iran

Correspondence Address:
Somayeh Taymouri
Department of Pharmaceutics and Novel Drug Delivery Systems Research Centre, School of Pharmacy, Isfahan University of Medical Sciences, Isfahan
I.R. Iran
Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/1735-5362.207203

Rights and Permissions

Inhalable dry powders containing poly lactic-co-glycolic acid (PLGA) nanoparticles (NPs) were developed for the delivery of tadalafil (TAD) for treatment of life-treating pulmonary arterial hypertension. Taguchi design was employed to evaluate the effects of different formulation variables on the physicochemical characteristics of PLGA-NPs prepared using emulsion solvent evaporation method. Inhalable PLGA-NPs of TAD were successfully prepared by co-spray drying the PLGA-NPs with inert carriers. Physicochemical characteristics and in vitro deposition of the aerosolized drug were also evaluated. The optimized formulation was prepared using 7.5 mg of PLGA, 2.5 mg of TAD, sonication time of 6 min and 2% polyvinyl alcohol (PVA) as the stabilizer. The optimized aqueous/oil phase ratio for PLGA-NPs preparation was 10:1. Polymer/drug ratio was the most effective parameter on the release efficiency. Encapsulation efficiency, zeta potential and particle size of PLGA-NPs were more affected by aqueous/organic phase ratio. The spray dried powders containing PLGA-NPs had a mass median aerodynamic diameter (MMAD) in the range of 1.4–2.8 μm that was suitable for TAD delivery to the deep region of lung. The presence of L- leucine in mannitol containing formulations decreased the interparticulate forces between particles and increased significantly the process yield and fine particle fraction (FPF). The results indicated that prepared dry powders containing TAD-loaded PLGA-NPs were suitable for inhalation and has the potential for the treatment of pulmonary arterial hypertension.


[FULL TEXT] [PDF]*
Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)
 

 Article Access Statistics
    Viewed781    
    Printed11    
    Emailed0    
    PDF Downloaded144    
    Comments [Add]    
    Cited by others 2    

Recommend this journal