Home About us Editorial board Ahead of print Current issue Search Archives Submit article Instructions Subscribe Contacts Login 
  • Users Online: 745
  • Home
  • Print this page
  • Email this page


 
 Table of Contents  
ORIGINAL ARTICLE
Year : 2017  |  Volume : 12  |  Issue : 5  |  Page : 409-415

Improvement of citral antimicrobial activity by incorporation into nanostructured lipid carriers: A potential application in food stuffs as a natural preservative


1 Biotechnology Research Center, Tabriz University of Medical Sciences; Department of Food Science and Technology, Islamic Azad University (Tabriz branch), Tabriz, I.R. Iran
2 Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, I.R. Iran
3 Zanjan Pharmaceutical Nanotechnology Research Center, Department of Pharmaceutics, Faculty of Pharmacy, Zanjan University of Medical Sciences, Zanjan, I.R. Iran
4 Department of Food Science and Technology, Islamic Azad University (Tabriz branch), Tabriz, I.R. Iran
5 Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, I.R. Iran

Date of Web Publication13-Sep-2017

Correspondence Address:
Hamed Hamishehkar
Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz
I.R. Iran
Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/1735-5362.213986

Rights and Permissions
  Abstract 


At the present time, utilization of essential oils in food preservation to prevent bacterial and fungal growth and improve shelf life and safety of the food products has notably gained increased interest. The aim of the present study was to improve the antimicrobial efficacy of citral as a natural preservative using nanostructured lipid carriers (NLCs). Formulations of NLCs were characterized using particle size analysis and scanning electron microscopy methods. Possible citral-carrier interaction and citral encapsulation efficiency percent (EE%) were assessed by Fourier transform infrared (FTIR) spectroscopy and gas chromatography techniques, respectively. Antimicrobial activity, minimum inhibitory concentration (MIC), and minimum bactericidal concentration (MBC) of citral-loaded NLCs were evaluated and compared with the conventional citral emulsion against various gram-positive bacteria (Staphylococcus aureus, Bacillus cereus), gram-negative bacteria (Escherichia coli), and fungi (Candida albicans). Citral-loaded NLCs were spherically shaped nanosized (74.8 nm) particles with narrow size distribution, high EE% (99.84%), and appropriate physical stability during 90 days of storage period. FTIR spectra indicated the interaction between citral and formulation ingredients, which justified the obtained high EE% value. The MIC and MBC values of citral-loaded NLCs were lower than those of citral emulsion for all microorganisms. NLCs formulation showed remarkable capability of encapsulating essential oil and increasing antimicrobial properties to offer effective preservation in food industry.

Keywords: Citral; Nanostructure lipid carriers (NLCs); Antimicrobial activity; Food preservative


How to cite this article:
Mokarizadeh M, Kafil HS, Ghanbarzadeh S, Alizadeh A, Hamishehkar H. Improvement of citral antimicrobial activity by incorporation into nanostructured lipid carriers: A potential application in food stuffs as a natural preservative. Res Pharma Sci 2017;12:409-15

How to cite this URL:
Mokarizadeh M, Kafil HS, Ghanbarzadeh S, Alizadeh A, Hamishehkar H. Improvement of citral antimicrobial activity by incorporation into nanostructured lipid carriers: A potential application in food stuffs as a natural preservative. Res Pharma Sci [serial online] 2017 [cited 2019 Dec 12];12:409-15. Available from: http://www.rpsjournal.net/text.asp?2017/12/5/409/213986




  Introduction Top


Besides many improvements taking place in food production methods, food safety is still an important issue. It has been estimated that each year about 30% of people in developed countries are affected by foodborne diseases such as diarrheal diseases [1]. Many methods have been presented for decreasing or preventing foodborne pathogens produced by modified atmosphere packaging and food preservation systems such as refrigeration, heating, and addition of antimicrobial compounds [2]. Synthetic chemicals have been widely used to control the microbial growth and reduce the incidence of food poisoning and spoilage. However, synthetic antimicrobial chemicals are sometimes associated with adverse effects including hypersensitivity, allergic reactions, and immune suppression. Hence, there is a growing interest to offer alternative natural antimicrobial agents such as extracts and essential oils of plants, which relatively indicate less hazardous effect on human health [3]. Essential oils are volatile compounds formed by aromatic plants as secondary metabolites and have been widely used in agricultural, sanitary, cosmetic, pharmaceutical, and food industries. Essential oils reveal significant potential to be used in foodstuff preservation process due to their antimicrobial property. Nevertheless, they can easily undergo oxidation reactions leading to reduced biological activity [4]. Citral (3,7-dimethyl-2-6-octadienal) is the mixture of two geometric isomers, i.e. geranial and neral), and exhibits inhibitory effect on oil and vapor form against both gram-positive and gram-negative bacteria [5]. However, similar to other essential oils, citral is highly vulnerable to oxidation, and its application as a preservative is restricted to fatty foodstuffs due to its hydrophobic property.

Lipid-based nanocarriers can protect essential oils against thermal- or photo- degradation, increase the stability of the product and consequently extend the final product shelf life, and do not affect product appearance, texture, and taste [6]. Furthermore, utilization of such delivery systems can increase the concentration of antimicrobials in food areas in which microorganisms are preferably located. Furthermore, they potentially increase the passive cellular absorption mechanisms which affect stability of lipid membrane and as a result increase the antibacterial activity. Incorporation of active ingredients as the oil part of nanostructured lipid carriers (NLCs) would be an interesting and novel idea in the field of nanoparticle preparation [7]. The present study aimed at loading citral, as a whole structural component substituted for oil phase, into NLCs with the maximum encapsulation efficiency for improvement of its antibacterial efficacy.


  Materials and Methods Top


Materials

Citral, Tween® 80, Mueller Hinton agar, Mueller Hinton Broth, and nutrient dextrose agar were supplied from Merck Chemicals Co. (Germany). Poloxamer® 407 and Miglyol® 812 were obtained from Sigma-Aldrich Company (USA) and Sasol Company (Germany), respectively. Glyceryl palmitostearate (Precirol® ATO-5) was kindly donated by Gattefosse Company (France).

Preparation of NLCs

Blank NLCs were prepared by hot melt homogenization method as described previously [8]. Briefly, 200 mg Miglyol® was dissolved in 800 mg melted Precirol® at about 70°C.

Afterward, Poloxamer® was dissolved in water and added dropwise into the oil phase under stirring at 20000 rpm (DIAX 900 homogenizer, Heidolph, Germany) and 70°C. Finally, after 15 min, formulation was allowed to cool down at room temperature. Citral- loaded NLCs were prepared by using 200 mg citral instead of Miglyol which resulted in higher loading capacity of citral in solid lipid core matrix that can solubilize lipophilic molecules. Citral emulsion was also prepared by gradually addition of water into citral, Miglyol®, and Tween® 80 mixture under stirring. Each formulation was prepared and characterized in triplicate.

Characterization of citral-loaded NLCs

The mean particle size, size distribution, and zeta potential were analyzed using photon correlation spectroscopy (Malvern Zetasizer Nano, UK) and reported as intensity-weighted average (z average) and polydispersity index (PDI). The morphology of prepared nanoparticles was analyzed using scanning electron microscope (SEM) (MIRA3 TESCAN, UK) after gold coating (DST1, Nanostructured Coating Co., Tehran, Iran). Fourier transform infrared spectroscopy (FTIR, 8400S, Shimadzu, Japan) spectra of citral, Precirol®, Poloxamer® 407, and lyophilized optimized formulation were obtained from 400 to 4000 cm-1 [9]. The EE% and LC% values were determined by centrifugation method using Amicon® Ultra-15 tube (Millipore, Germany). The EE% and LE% values of citral-loaded NLC formulations were mathematically calculated according to the following equations:



where, W(Initial citral) is the amount of citral initially used and W(Free citral) is the amount of free citral detected in the lower chamber of Amicon® tube after centrifugation of the NLCs formulation. Accordingly, W(Entrapped citral) is the amount of loaded citral and W(Total lipid) is the amount of used lipid in the preparation process [10]. The rinsed formulations were used for further experiments.

The clear solution in the bottom chamber of Amicon® tube was used for the determination of unloaded citral by gas chromatography (Fisons 8160, Milan, Italy, equipped with a flame ionization detector). Samples of each formulation were stored at room temperature and the physical stability was evaluated in term of the mean particle size after 30, 60, and 90 days.

Microbial strains

The antimicrobial activity of the citral essential oil formulations was evaluated against four food-related microorganisms including a gram negative bacteria ( Escherichia More Details coli ATCC 25922), two gram positive (Staphylococcus aureus ATCC 25923 and Bacillus cereus ATCC 11778) as well as a fungi (Candida albicans ATCC 10231). A single colony from the stock was transferred into Mueller Hinton Broth (MHB, Merck, Germany) and incubated over night at 37°C. After incubation time, the cells were harvested by centrifugation at 3000 rpm for 15 min, washed twice, and re-suspended in saline solution to provide an optical density equal to 0.5 McFarland standard turbidity (equivalent to 1.5 × 108 colony forming units (CFU)/mL of microorganisms). The MIC values were assessed using the broth microdilution method in sterile 96-well microtiter plates (Greiner, Germany) [11]. Bacterial strains were cultured overnight at 37°C in MHB medium. Two-fold serial dilutions of the citral-loaded NLCs were prepared in concentration of 3.81 to 2000 μg/mL and 1 × MHB medium for MIC assessment of Escherichia coli, Staphylococcus aureus, and Bacillus cereus. Prepared diluted solutions (180 μL) were transferred in to 96-well microtitre plates and then 20 μL of standardized microorganism suspensions (0.5 McFarland) was added and incubated at 37°C for 24 h. After incubation time, turbidity of tubes was evaluated to determine bacterial growth and last dilution with no turbidity at wavelength of 620 nm (lack of growth) was considered as MIC. Subsequently, to determine the MBC, samples (5 μL) from tubes with no growth was cultured in Mueller Hinton agar medium plate and incubated for 24 h at 37°C. To determine the MIC value for Candida albicans, sixteen dilution series from 1 to 2048 μg/mL of citral were prepared and 50 μL of fungi suspension was added and incubated at 37°C for 24 h. The MIC value was determined as the lowest concentration of essential oil inhibiting visible growth of fungi on the agar plate when there was visible growth on the control plates. All procedures were performed under sterile conditions and reproducibility was examined by triplicate examination. In each test, microorganism strain in MHB (with blank NLCs or emulsion formulation) and MHB alone were used as a positive and negative growth controls, respectively.


  Results Top


Preparation, characterization, and stability of citral formulations

Particle size and size distribution are the key parameters that may have significant effects on the ultimate performance of nanoparticles such as bioavailability, stability, and microbial activity [12]. Particle size and PDI values of the prepared emulsions were 1.02 and 0.726 μm, respectively. The particle size and size distribution profile of the optimized formulation were 78.8 ± 5.3 nm (z average intensity). Furthermore, the PDI value of the optimized formulation was 0.266 ± 0.08 [Figure 1]a. SEM images revealed that nanoparticles were spherical in shape matching with size analysis data and confirming the narrow size distribution of NLCs [Figure 1]b. SEM image showed particle size smaller than the one exhibited by PCS. This is due to the lipophilic characteristics of the nanoparticles which tend to associate in close proximity. EE% of the optimized NLCs formulation was found to be 99.84% ± 0.05 with LC% of 12.5% ± 0.5.
Figure 1: (a) Particle size distribution profile and (b) scanning electron microscopy (SEM) image of optimum nanostructured lipid carrier (NLC) formulation.

Click here to view


The physical stability experiment indicated lack of citral leakage and particle size growth during 90 days of storage period [Table 1]. Representative GC chromatograms of citral standard solution and unloaded citral after separation from citral-loaded NLCs are presented in [Figure 2]. The peak value of citral appeared at 21.9 min. FTIR spectra exhibited movement of α,β-unsaturated carbonyl group peak of citral from 1677 cm-1 to 1652 cm-1 [Figure 3].
Table 1: Physical stability of optimized nanostructured lipid carriers (NLCs) just after preparation and during storage period (data are presented as mean ± standard deviation, n = 3).

Click here to view
Figure 2: Representative gas chromatography (GC) chromatograms of (a) citral standard solution and (b) free citral after separation from citral-loaded nanostructured lipid carrier (NLCs) formulation.

Click here to view
Figure 3: Fourier transform infrared (FTIR) spectra of (a) Poloxamer®, (b) Precirol®, (c) citral, and (d) citral-loaded nanostructured lipid carriers (NLC).

Click here to view


This shift indicates interaction of citral with lipids via hydrogen bond in the process of NLCs preparation.

Determination of the MIC and MBC values of citral formulations

MIC and MBC values of citral-loaded NLCs and citral emulsion formulations against different microorganisms are shown in [Table 2]. Mean MIC values of citral-loaded NLCs against all microorganisms were significantly lower than those of citral emulsion. On the other hand, citral-loaded NLCs and emulsion formulations showed lower MIC values, which resulted in higher antibacterial effect on Bacillus cereus in comparison with other microorganisms. Correspondingly, both of the NLCs and emulsion formulations exhibited the highest MIC values in the case of Escherichia coli, suggesting that citral presented higher antibacterial efficiency against gram-positive bacteria compared with gram-positive ones.
Table 2: Minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of citral-loaded nanostructured lipid carriers (NLCs) and emulsion formulation.

Click here to view



  Discussion Top


A good number of studies such as one conducted by Cristani, et al. evaluated several parameters to explain the antibacterial mechanism of essential oils. In this regard, it was proposed that terpenes presented antimicrobial effect due to their capability of interrupting lipid section of bilayer membrane of the bacteria. Furthermore, after crossing the membrane, terpenes disturbed some main regions inside the cells, which led to the antibacterial effect [13]. Nanocarriers could also protect essential oils against possible thermal- or photo-degradation, oxidation or evaporation, which assures increased stability, flavor and function, and consequently extend the final product shelf life [14]. The proposed underlying mechanisms of antimicrobial effect of terpenes such as citral are the interaction with cytoplasmic membrane resulting in loss of membrane integrity, inhibition of respiratory enzymes, and subsequently dissipation of the proton-motive force [15]. Lipid-based nanocarriers can also facilitate antimicrobial activity of the essential oils by providing diverse diffusion properties trough biological membranes due to nanoscale and lipophilic nature [16]. Addition of encapsulated citral in lipid-based nanoparticles with lower amounts of citral rather than using citral emulsion is not only economical, but also could prevent any changes in the taste and color of foodstuffs. One of the possible mechanisms justifying the superiority of nanoparticles presenting elevated microbial activity of active ingredients is the enhancement of NLCs transport through cell membrane of the microorganisms and increment of the antibacterial and antifungal activity [17]. One of the strategies to enhance the stability is decreasing the particle size, which results in reduction of the sedimentation rate. Consequently, the particles remain suspended for longer periods in the suspension. Surface-area-to-volume ratio is dependent on diameter of nanoparticles. Smaller nanoparticles result in larger surface area, and therefore more loading sites will be available. The obtained results indicated that particle size and size distribution of the produced nanoparticles were less than 100 nm and relatively stable during the storage period. Thais can be considered as a critical advantage in formulation of nanoparticles, warranting their stability in the distribution media such as drinking stuffs. The low PDI values indicated the narrow size distribution of the prepared formulation. Due to Ostwald ripening phenomenon, a narrow size distribution is critical to inhibit the particle growth [18]. Monodispersity decreases the saturation solubility difference and gradients of drug concentration within the medium and therefore help to prevent occurrence of Ostwald ripening phenomenon [19]. High EE% and LC% were predictable considering high lipophilicity of citral. Furthermore, nonporous structure of solid lipid matrix in NLC formulation can be regarded as another reason for higher encapsulation capacity of NLCs formulations [20]. The observed interaction in FTIR experiment also provided the justification for the observed high loading capacity of citral in NLCs formulation.


  Conclusions Top


Encapsulation of citral in NLCs achieved in the current study could be a promising strategy to improve the efficiency of these essential oils as an effective antimicrobial. Encapsulation of the oil in NLCs could offer prolonged preservative effect in cosmetic and food industry as they are protected from physicochemical instability. NLCs could be used as a highly efficient carrier system to improve citral antibacterial and antifungal activity. The obtained results showed lower MIC and MBC values of citral-loaded NLCs compared with citral emulsion.


  Acknowledgements Top


The financial support of Vice Chancellor for Research of Tabriz University of Medical Sciences is highly acknowledged.



 
  References Top

1.
Wang S, Weller D, Falardeau J, Strawn LK, Mardones FO, Adell AD, et al. Food safety trends: From globalization of whole genome sequencing to application of new tools to prevent foodborne diseases. Trends Food Sci Technol. 2016;57:188-198.  Back to cited text no. 1
    
2.
Morsy MK, Khalaf HH, Sharoba AM, El-Tanahi HH, Cutter CN. Incorporation of essential oils and nanoparticles in pullulan films to control foodborne pathogens on meat and poultry products. J Food Sci. 2014;79(4):675-684.  Back to cited text no. 2
    
3.
da Cruz Cabral L, Pinto VF, Patriarca A. Application of plant derived compounds to control fungal spoilage and mycotoxin production in foods. Int J Food Microbiol. 2013;166(1):1-14.  Back to cited text no. 3
    
4.
Bassole IH, Juliani HR. Essential oils in combination and their antimicrobial properties. Molecules. 2012;17(4):3989-4006.  Back to cited text no. 4
    
5.
Argyropoulou C, Daferera D, Tarantilis PA, Fasseas C, Polissiou M. Chemical composition of the essential oil from leaves of Lippia citriodora HBK (Verbenaceae) at two developmental stages. Biochem Syst Ecol. 2007;35(12):831-837.  Back to cited text no. 5
    
6.
Yang FL, Li XG, Zhu F, Lei CL. Structural characterization of nanoparticles loaded with garlic essential oil and their insecticidal activity against Tribolium castaneum (Herbst) (Coleoptera: Tenebrionidae). J Agric Food Chem. 2009;57(21):10156-10162.  Back to cited text no. 6
    
7.
Mohammadi M, Ghanbarzadeh B, Hamishehkar H. Formulation of nanoliposomal vitamin D3 for potential application in beverage fortification. Adv Pharm Bull. 2014;4(Suppl 2):569-575.  Back to cited text no. 7
    
8.
Hamishehkar H, Shokri J, Fallahi S, Jahangiri A, Ghanbarzadeh S, Kouhsoltani M. Histopathological evaluation of caffeine-loaded solid lipid nanoparticles in efficient treatment of cellulite. Drug Dev Ind Pharm. 2015;41(10):1640-1646.  Back to cited text no. 8
    
9.
Ghaderi S, Ghanbarzadeh S, Mohammadhassani Z, Hamishehkar H. Formulation of gammaoryzanol- loaded nanoparticles for potential application in fortifying food products. Adv Pharm Bull. 2014;4(Suppl 2):549-554.  Back to cited text no. 9
    
10.
Ghaderi S, Ghanbarzadeh S, Hamishehkar H. Evaluation of different methods to produce nanoparticle containing gammaoryzanol for potential use in food fortification. Pharm Sci. 2015;20(4):130-134.  Back to cited text no. 10
    
11.
Wiegand I, Hilpert K, Hancock RE. Agar and broth dilution methods to determine the minimal inhibitory concentration (MIC) of antimicrobial substances. Nat Protoc. 2008;3(2):163-175.  Back to cited text no. 11
    
12.
Mardhiah Adib Z, Ghanbarzadeh S, Kouhsoltani M, Yari Khosroshahi A, Hamishehkar H. The effect of particle size on the deposition of solid lipid nanoparticles in different skin layers: a histological study. Adv pharm bull. 2016;6(1):31-36.  Back to cited text no. 12
    
13.
Cristani M, D'Arrigo M, Mandalari G, Castelli F, Sarpietro MG, Micieli D, et al. Interaction of four monoterpenes contained in essential oils with model membranes: implications for their antibacterial activity. J Agric Food Chem. 2007;55(15): 6300-6308.  Back to cited text no. 13
    
14.
Ali H, Shirode AB, Sylvester PW, Nazzal S. Preparation and in vitro antiproliferative effect of tocotrienol loaded lipid nanoparticles. Colloids Surf Physicochem Eng Aspects. 2010;353(1):43-51.  Back to cited text no. 14
    
15.
Nikbakht MR, Sharifi S, Emami SA, Khodaie L. Chemical composition and antiprolifrative activity of Artemisia persica Boiss. and Artemisia turcomanica Gand. essential oils. Res Pharm Sci. 2014;9(2):155-163.  Back to cited text no. 15
    
16.
Kumar P, Kim KH, Bansal V, Kumar S, Dilbaghi N, Kim YH. Modern progress and future challenges in nanocarriers for probe applications. TrAC Trends Anal Chem. 2017;86:235-250.  Back to cited text no. 16
    
17.
Garse H, Jagtap P, Kadam V. Solid lipid nanoparticles based gel for topical delivery of antifungal agent. Int J Pharm Sci Res. 2015;6:3571-3578.  Back to cited text no. 17
    
18.
Lim SS, Baik MY, Decker EA, Henson L, Popplewell LM, McClements DJ, et al. Stabilization of orange oil-in-water emulsions: a new role for ester gum as an Ostwald ripening inhibitor. Food Chem. 2011;128(4):1023-1028.  Back to cited text no. 18
    
19.
Wooster TJ, Golding M, Sanguansri P. Impact of oil type on nanoemulsion formation and Ostwald ripening stability. Langmuir. 2008;24(22): 12758-12765.  Back to cited text no. 19
    
20.
Mehnert W, Mader K. Solid lipid nanoparticles: production, characterization and applications. Adv Drug Deliv Rev. 2001;47(2-3):165-196.  Back to cited text no. 20
    


    Figures

  [Figure 1], [Figure 2], [Figure 3]
 
 
    Tables

  [Table 1], [Table 2]


This article has been cited by
1 Anti-Microbial and Free Radical Scavenging Activities of Nigella Sativa Colloidal-Emulgel
Ahmad M. Eid,Nidal A. Jaradat,Nagib A. Elmarzugi,Raed Alkowni,Fatima Hussen,Laila A. Ayyash,Maher Sawafta,Hadeel Danaa
Letters in Drug Design & Discovery. 2019; 16(4): 408
[Pubmed] | [DOI]
2 Prediction of the skin sensitization potential of didecyldimethylammonium chloride and 3,7-dimethyl-2,6-octadienal and mixtures of these compounds with the excipient ethylene glycol through the human Cell Line Activation Test and the Direct Peptide Reactivity Assay
JaeHee Lee,AhRang Cho,Ravi Gautam,YeonGyeong Kim,SoJung Shin,EunSeob Song,HyeonJi Kim,SuJeong Yang,Manju Acharya,JiHoon Jo,Anju Maharjan,IlSeob Shim,Hyun-Mi Kim,PilJe Kim,TaeSung Kim,JongKwon Lee,MiJeong Kang,TaeCheon Jeong,ChangYul Kim,HyoungAh Kim,Yong Heo
Toxicology and Industrial Health. 2019; 35(8): 507
[Pubmed] | [DOI]
3 Nanoparticles fabricated from bulk solid lipids: Preparation, properties, and potential food applications
Qixin Zhong,Linhan Zhang
Advances in Colloid and Interface Science. 2019; : 102033
[Pubmed] | [DOI]



 

Top
 
 
  Search
 
Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
Access Statistics
Email Alert *
Add to My List *
* Registration required (free)

 
  In this article
   Abstract
    Introduction
Materials and Me...
    Results
    Discussion
    Conclusions
    Acknowledgements
   References
   Article Figures
   Article Tables

 Article Access Statistics
    Viewed1236    
    Printed12    
    Emailed0    
    PDF Downloaded164    
    Comments [Add]    
    Cited by others 3    

Recommend this journal


[TAG2]
[TAG3]
[TAG4]