Home About us Editorial board Ahead of print Current issue Search Archives Submit article Instructions Subscribe Contacts Login 
  • Users Online: 316
  • Home
  • Print this page
  • Email this page
ORIGINAL ARTICLE
Year : 2018  |  Volume : 13  |  Issue : 2  |  Page : 121-129

Protective effects of glucosamine and its acetylated derivative on serum/glucose deprivation-induced PC12 cells death: Role of reactive oxygen species


1 Medical Toxicology Research center, Faculty of Medicine; Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, I.R. Iran
2 Eye Research Center; Research Center for Patient Safety, Mashhad University of Medical Sciences, Mashhad, I.R. Iran
3 Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, I.R. Iran
4 Biotechnology Research Center, Institute of Pharmaceutical Technology; Department of Medical Biotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, I.R. Iran

Correspondence Address:
Khadijeh Jamialahmadi
Biotechnology Research Center, Institute of Pharmaceutical Technology; Department of Medical Biotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad
I.R. Iran
Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/1735-5362.223794

Rights and Permissions

Finding products with antiapoptotic activities has been one of the approaches for the treatment of neurodegenerative disorders. Serum/glucose deprivation (SGD) has been used as a model for the investigation of the molecular mechanisms of neuronal ischemia. Recent studies indicated that glucosamine (GlcN) and N-acetyl glucosamine (GlcNAc) have many pharmacological effects including antioxidant activities. The present study aimed to investigate the protective effects of GlcN and GlcNAc against SGD-induced PC12 cells injury. The PC12 cells were pretreated with GlcN and GlcNAc for 2 h, and then exposed to SGD for 6, 12 and 24 h. Cell viability was evaluated by MTT assay. The level of intracellular reactive oxygen species (ROS) was determined by flow cytometry using 2’,7’- dichlorofluorescin diacetate (DCFH-DA) as a probe. SGD condition caused a significant reduction in cell survival after 6, 12, and 24 h (P < 0.001). Pretreatment with GlcN and GlcNAc (0.6-20 mM) increased cell viability following SGD insult. A significant increase in cell apoptosis was observed in cells under SGD condition after 12 h (P < 0.001). Pretreatment with GlcN and GlcNAc (5-20 mM) decreased apoptosis following SGD condition after 12 h. SGD resulted in a significant increase in intracellular ROS production after 12 h. Pretreatment with both amino sugars at concentrations of 10 to 20 mM could reverse the ROS increment. Results indicated that GlcN and GlcNAc had a cytoprotective property against SGD-induced cell death via anti-apoptosis and antioxidant activities, suggesting that these aminosugers have the potential to be used as novel therapeutic agents for neurodegenerative disorders.


[FULL TEXT] [PDF]*
Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)
 

 Article Access Statistics
    Viewed18    
    Printed0    
    Emailed0    
    PDF Downloaded5    
    Comments [Add]    

Recommend this journal