Home About us Editorial board Ahead of print Current issue Search Archives Submit article Instructions Subscribe Contacts Login 
  • Users Online: 179
  • Home
  • Print this page
  • Email this page
ORIGINAL ARTICLE
Year : 2018  |  Volume : 13  |  Issue : 2  |  Page : 93-102

Synthesis, characterization, and stability study of desloratadine multicomponent crystal formation


1 School of Pharmacy, Bandung Institute of Technology, Ganesha 10, Bandung, 40132; Department of Pharmacy, Sebelas Maret University, Ir. Sutami 36A, Surakarta, 57126, Indonesia
2 School of Pharmacy, Bandung Institute of Technology, Ganesha 10, Bandung, 40132, Indonesia

Correspondence Address:
Ahmad Ainurofiq
School of Pharmacy, Bandung Institute of Technology, Ganesha 10, Bandung, 40132; Department of Pharmacy, Sebelas Maret University, Ir. Sutami 36A, Surakarta, 57126
Indonesia
Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/1735-5362.223775

Rights and Permissions

This study describes the formation of multicomponent crystal (MCC) of desloratadine (DES). The objective of this study was to discover the new pharmaceutical MCC of DES using several coformers. The MCC synthesis was performed between DES and 26 coformers using an equimolar ratio with a solvent evaporation technique. The selection of the appropriate solvent was carried out using 12 solvents. The preview of the MCC of DES was performed using polarized light microscopy (PLM). The formation of MCC was confirmed using powder X-ray diffraction (PXRD), differential scanning calorimetry (DSC), fourier transform infrared spectroscopy (FTIR), and scanning electron microscopy (SEM). The accelerated stability of MCC at 40 °C and relative humidity of 75% was investigated using PXRD and FTIR. Depending on the prior evaluation, DES and benzoic acid (BA) formed the MCC. PLM and SEM results showed that crystal habit of combination between DES and BA differed from the constituent components. Moreover, the diffractogram pattern of DES-BA was distinct from the constituent components. The DSC thermogram showed a new peak which was distinct from both constituent components. The FTIR study proved a new spectrum. All characterizations indicated that a new solid crystal was formed, ensuring the MCC formation. In addition, DES-BA MCC had both chemical and physical stabilities for a period of 4 months.


[FULL TEXT] [PDF]*
Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)
 

 Article Access Statistics
    Viewed770    
    Printed71    
    Emailed0    
    PDF Downloaded164    
    Comments [Add]    

Recommend this journal