Home About us Editorial board Ahead of print Current issue Search Archives Submit article Instructions Subscribe Contacts Login 
  • Users Online: 59
  • Home
  • Print this page
  • Email this page
Year : 2019  |  Volume : 14  |  Issue : 2  |  Page : 155-166

Design, synthesis and evaluation of cytotoxic, antimicrobial, and anti-HIV-1 activities of new 1,2,3,4-tetrahydropyrimidine derivatives

1 Department of Medicinal Chemistry, School of Pharmacy, Ardabil University of Medical Sciences, Ardabil, I.R. Iran
2 Medical Lab Technology Department, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, I.R. Iran
3 Department of Hepatitis and AIDS, Pasteur Institute of Iran, Tehran, I.R. Iran

Correspondence Address:
Saghi Sepehri
Department of Medicinal Chemistry, School of Pharmacy, Ardabil University of Medical Sciences, Ardabil
I.R. Iran
Login to access the Email id

Source of Support: None, Conflict of Interest: None

DOI: 10.4103/1735-5362.253363

Rights and Permissions

A series of new 1,2,3,4-tetrahydropyrimidine (THPM) derivatives were designed and synthesized within a one-pot three component Biginelli reaction. The structures of compounds were characterized by FT-IR, 1H- NMR, mass spectroscopy, and elemental analysis. All synthesized derivatives were screened for their cytotoxic, antimicrobial, and anti-HIV activites. Due to significant cytotoxic and antimicrobial effects of 1,2,3,4-THPM scaffold, in this study, cytotoxic and antimicrobial activities of synthesized derivatives were evaluated on two cell lines and four bacterial strains. Compounds 4e and 4k showed highest cytotoxic activity against HeLa and MCF-7 cell lines. In addition, 4c and 4d were most active against MCF-7 and HeLa cell lines, respectively. Among the compounds, 4e revealed high antimicrobial activity against four strains. According to the results, 4e possessing m-bromophenyl group at C-4 position of THPM exhibited the highest cytotoxic and antimicrobial effects. Also, all the newly synthesized compounds were evaluated for their anti-HIV-1 assay. Compounds 4l and 4a indicated remarkable anti-HIV-1 activity. It is concluded from cytotoxic, antimicrobial, and anti-HIV-1 activities that the 1,2,3,4-tertahydropyrimidines may serve as hit compounds for development of new anticancer small-molecules.

Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)

 Article Access Statistics
    PDF Downloaded166    
    Comments [Add]    
    Cited by others 2    

Recommend this journal