Home About us Editorial board Ahead of print Current issue Search Archives Submit article Instructions Subscribe Contacts Login 
  • Users Online: 501
  • Home
  • Print this page
  • Email this page
ORIGINAL ARTICLE
Year : 2019  |  Volume : 14  |  Issue : 3  |  Page : 216-227

β-lactoglobulin-irinotecan inclusion complex as a new targeted nanocarrier for colorectal cancer cells


1 Nano Drug Delivery Research Center, Faculty of Pharmacy, Kermanshah University of Medical Sciences; Department of Biology, Faculty of Science, Razi University, Kermanshah, I.R. Iran
2 Department of Biology, Faculty of Science, Razi University, Kermanshah, I.R. Iran
3 Department of pharmaceutics, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, I.R. Iran

Correspondence Address:
Katayoun Derakhshandeh
Department of pharmaceutics, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan
I.R. Iran
Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/1735-5362.258488

Rights and Permissions

Beta-lactoglobulin (β-LG) is a lipocalin family member whose general function appears to be solubilizing and transport of hydrophobic molecules. Some properties such as avalability, ease of purification, and peculiar resistance to acidic environments can make β-LG as a carrier for hydrophobic and acid labile drugs for oral administration. In this protein vehicle, drug could be protected in acidic environment of stomach and then released within the basic small intestine. In this study, the potential of β-LG as a nanocarrier for oral delivery of a potent agent in colorectal cancer treatment, irinotecan, was evaluated. The nanoparticle was prepared by the physical inclusion complex method. Size, drug loading, encapsulation efficiency, and in vitro drug release at various pH values were investigated. The optimum formulation showed a narrow size distribution with an average diameter of 139.86 ± 13.75 nm and drug loading about 84.33 ± 5.03%. Based on the results obtained from docking simulation of irinotecan-complex, there are two distinct binding sites in this nanocarrier. Cytotoxicity of this nanocarrier on the HT-29 cancer cell line and AGS was measured by MTT assay. The cytotoxicity experiment showed that the drug-loaded nanocarrier was more effective than free drug. The higher release percent of drug from the β-LG complex at pH 7.4 compared to pH 1.2 indicated that the proposed nanocarrier could be introduced as a suitable nanovehicle for labile drugs in acidic medium targeted for colorectal segment.


[FULL TEXT] [PDF]*
Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)
 

 Article Access Statistics
    Viewed289    
    Printed35    
    Emailed0    
    PDF Downloaded72    
    Comments [Add]    

Recommend this journal