Home About us Editorial board Ahead of print Current issue Search Archives Submit article Instructions Subscribe Contacts Login 
  • Users Online: 42
  • Home
  • Print this page
  • Email this page
ORIGINAL ARTICLE
Year : 2019  |  Volume : 14  |  Issue : 4  |  Page : 293-307

Preparation and optimization of polymeric micelles as an oral drug delivery system for deferoxamine mesylate: in vitro and ex vivo studies


1 School of Pharmacy; Nanotechnology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, I.R, Iran
2 School of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, I.R, Iran

Correspondence Address:
Behzad Sharif Makhmal Zadeh
School of Pharmacy; Nanotechnology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, I.R
Iran
Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/1735-5362.263554

Rights and Permissions

Deferoxamine mesylate (DFO) is administered as a slow subcutaneous or intravenous infusion due to its poor oral bioavailability and lack of dose proportionality. The aim of the present study was to prepare and optimize polymeric micelles containing DFO, as an oral drug delivery system for increasing permeability and oral bioavailability. Based on a full factorial design with three variables in two levels, eight polymeric micelle formulations were made using film hydration method. Two polymers including 0.1% of carbomer 934 and Poloxamer® P 407 and two blends of surfactant + co-surfactant including 1 and 2 fold of critical micelle concentration of Labrafil® + Labrasol® and Tween 80 + Span 20 were used to prepare polymeric micelles. The effect of variables on particle size (PS), entrapment efficiency (EE), drug release, thermal behavior, in vitro iron bonding and ex vivo rat intestinal permeability were evaluated. The PS of polymeric micelles was less than 83 nm that showed 80% EE with continuous drug release pattern. The change in type of polymer from carbomer to Ploxamer® significantly increased drug release. All polymeric micelles increased the iron-bonding ability of DFO compared to control. This could be due to surfactants that can play an important role in this ability. Polymeric micelles increased drug permeability through intestine more than 2.5 folds compared to control mainly affected by polymer type. Optimized polymeric micelle consists of Tween 80 and Span 20 with 1.35 folds of critical micelle concentration and Poloxamer® demonstrated 97.32% iron bonding and a 3-fold increase in permeation through the rat intestine compared with control.


[FULL TEXT] [PDF]*
Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)
 

 Article Access Statistics
    Viewed41    
    Printed3    
    Emailed0    
    PDF Downloaded13    
    Comments [Add]    

Recommend this journal