Home About us Editorial board Ahead of print Current issue Search Archives Submit article Instructions Subscribe Contacts Login 
  • Users Online: 14
  • Home
  • Print this page
  • Email this page
ORIGINAL ARTICLE
Year : 2020  |  Volume : 15  |  Issue : 2  |  Page : 154-163

Synthesis and cytotoxic effect of a few N-heteroaryl enamino amides and dihydropyrimidinethiones on AGS and MCF-7 human cancer cell lines


1 1Department of Medicinal Chemistry, School of Pharmacy, Ardabil University of Medical Sciences; Department of Pharmacology and Toxicology, School of Pharmacy, Ardabil University of Medical Sciences, Ardabil, I.R. Iran
2 Department of Pharmacology and Toxicology, School of Pharmacy, Ardabil University of Medical Sciences, Ardabil, I.R. Iran
3 Department of Medicinal Chemistry, School of Pharmacy, Ardabil University of Medical Sciences, Ardabil, I.R. Iran

Correspondence Address:
Nima Razzaghi-Asl
Department of Medicinal Chemistry, School of Pharmacy, Ardabil University of Medical Sciences, Ardabil
I.R. Iran
Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/1735-5362.283815

Rights and Permissions

Background and purpose: Cancer prevalence has increased in the last century posing psychological, social, and economic consequences. Chemotherapy uses chemical molecules to control cancer. New studies have shown that dihydropyrimidinethione (DHPMT) derivatives have the potential of being developed into anticancer agents. Experimental approach: New derivatives of DHPMTs and a few acyclic bioisosters were synthesized via Biginelli reaction and assessed for their toxicity against gastric (AGS) and breast cancer (MCF-7) cell lines through MTT method. Findings / Results: Chemical structures of all synthesized N-heteroaryl enamino amides and DHPMTs were confirmed by spectroscopic methods. Result of biological assessment exhibited that none of the tested agents was more cytotoxic than cis-platin against AGS and MCF-7 cell lines and compound 2b was the most cytotoxic agent against AGS (IC50 41.10 μM) and MCF-7 (IC50 75.69 μM). Cytotoxic data were mostly correlated with the number of H-bond donors within gastric and breast cancer cells. Conclusion and implications: It was realized that DHPMTs were able to inhibit the growth of cancer cells much better than acyclic enamino amides and moreover;N-(4-methylbenzothiazol-2-yl) DHPMT derivative (2b) supposed possible interaction with a poor electron site of target due to the lipophilic nature of benzothiazole ring and also less electron rich nature than isoxazole. Similar scenario was observed with acyclic enamino amides in which incorporation of sulfur and nitrogen containing heterocycles doubled the cytotoxic effects. Results of the present contribution might assist in extending the scope of DHPMTs as privileged medicinal scaffolds.


[FULL TEXT] [PDF]*
Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)
 

 Article Access Statistics
    Viewed242    
    Printed16    
    Emailed0    
    PDF Downloaded60    
    Comments [Add]    

Recommend this journal