Home About us Editorial board Ahead of print Current issue Search Archives Submit article Instructions Subscribe Contacts Login 
  • Users Online: 83
  • Home
  • Print this page
  • Email this page
ORIGINAL ARTICLE
Year : 2020  |  Volume : 15  |  Issue : 5  |  Page : 473-480

Bioassay-guided isolation of glycolipids from the seaweed Gracilaria corticata


1 Department of Pharmaceutical Biotechnology and Isfahan Pharmaceutical Sciences Research Centre, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, I.R. Iran
2 Department of Pharmacognosy and Isfahan Pharmaceutical Sciences Research Center, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, I.R. Iran

Correspondence Address:
Afsaneh Yegdaneh
Department of Pharmacognosy and Isfahan Pharmaceutical Sciences Research Center, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan
I.R. Iran
Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/1735-5362.297850

Rights and Permissions

Background and purpose: In some countries, seaweeds are famous traditional food which contain different types of secondary metabolites. These marine organisms have several bioactive secondary metabolites. The aim of this study was to perform bioassay-guided isolation of glycolipids from a Persian Gulf seaweed Gracilaria corticata J.Agardh. Experimental approach: G. corticata was collected from the Persian Gulf. The plant was extracted by maceration with methanol-ethyl acetate solvent. The extract was partitioned by the Kupchan method to yield n-hexane, dichloromethane, butanol, and water partitions. The most active partition found in the cytotoxicity assay was further fractionated using medium pressure liquid chromatography and high-performance liquid chromatography (HPLC) methods to yield two pure compounds. The structures of the isolated compounds were elucidated using various spectroscopic methods. The cytotoxic activities of all fractions were also tested. sFindings/Results: n-hexane and dichloromethane partitions exhibited higher and significant cytotoxicity against the HeLa cell line with IC50s of 117.41 and 291.38 μg/mL, respectively. The cytotoxic effects of nine fractions of the n-hexane partition against HeLa and HUVEC cells were also ranging from 96.33 to 243.56 μg/mL and 85.38 to 290.5 μg/mL, respectively. Two sulfoquinovosyldiacylglycerides were isolated and their structures were elucidated. Conclusion and implications: From the spectral characteristics, the isolated compound from the extract was confirmed to be a-D-glucopyranosyl-1,2-O-diacyl-glycerols with moderate cytotoxic activity.


[FULL TEXT] [PDF]*
Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)
 

 Article Access Statistics
    Viewed89    
    Printed0    
    Emailed0    
    PDF Downloaded23    
    Comments [Add]    

Recommend this journal