Home About us Editorial board Ahead of print Current issue Search Archives Submit article Instructions Subscribe Contacts Login 
  • Users Online: 111
  • Home
  • Print this page
  • Email this page
ORIGINAL ARTICLE
Year : 2021  |  Volume : 16  |  Issue : 4  |  Page : 425-435

Benzylidene-6-hydroxy-3,4-dihydronaphthalenone chalconoids as potent tyrosinase inhibitors


1 Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, I.R. Iran
2 Department of Medicinal Chemistry, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, I.R. Iran
3 Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, I.R. Iran
4 Department of Medicinal Chemistry, School of Pharmacy; Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, I.R. Iran

Correspondence Address:
Mehdi Khoshneviszadeh
Department of Medicinal Chemistry, School of Pharmacy; Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz
I.R. Iran
Sara Ranjbar
Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz
I.R. Iran
Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/1735-5362.319580

Rights and Permissions

Background and purpose: Tyrosinase enzyme has a key role in melanin biosynthesis by converting tyrosine into dopaquinone. It also participates in the enzymatic browning of vegetables by polyphenol oxidation. Therefore, tyrosinase inhibitors are useful in the fields of medicine, cosmetics, and agriculture. Many tyrosinase inhibitors having drawbacks have been reported to date; so, finding new inhibitors is a great need. Experimental approach: A variety of 6-hydroxy-3,4-dihydronaphthalenone chalcone-like analogs (C1-C10) have been synthesized by aldol condensation of 6-hydroxy tetralone and differently substituted benzaldehydes. The compounds were evaluated for their inhibitory effect on mushroom tyrosinase by a spectrophotometric method. Moreover, the inhibition manner of the most active compound was determined by Lineweaver-Burk plots. Docking study was done using AutoDock 4.2. The drug-likeness scores and ADME features of the active derivatives were also predicted. Results/Findings: Most of the compounds showed remarkable inhibitory activity against the tyrosinase enzyme. 6-Hydroxy-2-(3,4,5-trimethoxybenzylidene)-3,4-dihydronaphthalen-1(2H)-one (C2) was the most potent derivative amongst the series with an IC50 value of 8.8 μM which was slightly more favorable to that of the reference kojic acid (IC50 = 9.7 μM). Inhibitory kinetic studies revealed that C2 behaves as a competitive inhibitor. According to the docking results, compound C2 formed the most stable enzyme-inhibitor complex, mainly via establishing interactions with the two copper ions in the active site. In silico drug-likeness and pharmacokinetics predictions for the proposed tyrosinase inhibitors revealed that most of the compounds including C2 have proper drug-likeness scores and pharmacokinetic properties. Conclusion and implications: Therefore, C2 could be suggested as a promising tyrosinase inhibitor that might be a good lead compound in medicine, cosmetics, and the food industry, and further drug development of this compound might be of great interest.


[FULL TEXT] [PDF]*
Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)
 

 Article Access Statistics
    Viewed212    
    Printed0    
    Emailed0    
    PDF Downloaded28    
    Comments [Add]    

Recommend this journal