Home About us Editorial board Ahead of print Current issue Search Archives Submit article Instructions Subscribe Contacts Login
  • Users Online: 629
  • Home
  • Print this page
  • Email this page
Export selected to
Reference Manager
Medlars Format
RefWorks Format
BibTex Format
   Table of Contents - Current issue
September-October 2020
Volume 15 | Issue 5
Page Nos. 410-502

Online since Monday, October 19, 2020

Accessed 266 times.

PDF access policy
Journal allows immediate open access to content in HTML + PDF
View as eBookView issue as eBook
Access StatisticsIssue statistics
Hide all abstracts  Show selected abstracts  Export selected to  Add to my list

Pharmacokinetics of piperine after oral administration of Sahastara remedy capsules in healthy volunteers p. 410
Arunporn Itharat, Puritat Kanokkangsadal, Phisit Khemawoot, Preecha Wanichsetakul, Neal M Davies
Background and purpose: To investigate the pharmacokinetics of piperine after single oral doses of capsules containing Sahastara (SHT) remedy dried ethanolic extracts in healthy Thai volunteers. Experimental approach: Twenty-four healthy volunteers were divided into two dosage groups. They received a single oral dose of SHT remedy extract capsules of 100 or 200 mg. Blood was collected at time intervals of 0, 0.5, 1, 2, 4, 6, 8, 12, 24, and 48 h. Acute clinical safety was monitored by complete physical examination and laboratory tests during the study period. Piperine concentration in blood and urine was determined by liquid chromatography tandem-mass spectrometry. Findings/Results: No serious adverse events were detected, only one volunteer had abdominal pain that was self-limiting. The pharmacokinetics of piperine following SHT remedy extract capsule administration demonstrated a mean peak concentration (Cmax) of piperine of 3.77 μg/mL and 6.59 μg/mL after dosing with 100 and 200 mg, respectively. Interestingly, a secondary maximum concentration of piperine was observed in this study, which might be related to enterohepatic recirculation. Negligible amounts of unchanged piperine were detected in urine. Conclusion and implication: The systemic exposure of piperine after SHT remedy ethanolic extract demonstrated dose proportionality after single oral dosing of 100-200 mg. Piperine was detectable in plasma for at least 48 h with evidence of enterohepatic recirculation. Metabolism and excretion profiles of piperine after administration of SHT remedy extract capsule need to be further explored for phytopharmaceutical product development.
[ABSTRACT]  [HTML Full text]  [PDF]  [Mobile Full text]  [EPub]  [Sword Plugin for Repository]Beta

Melatonin suppresses the brain injury after cerebral ischemia/reperfusion in hyperglycaemic rats Highly accessed article p. 418
Dalia O Saleh, Gehad A Abdel Jaleel, Sally W Al-Awdan, Azza Hassan, Gihan F Asaad
Background and purpose: Diabetes mellitus is a disorder accompanied by oxidative and inflammatory responses, that might exacerbate vascular complications. The purpose of this study was to investigate the potential antioxidant and anti-inflammatory effects of melatonin (MLN) on streptozotocin (STZ)-induced diabetic rats subjected to middle cerebral artery occlusion followed by reperfusion (MCAO/Re). Experimental approach: Diabetes was induced in rats by a single injection of STZ (55 mg/kg; i.p.). The cerebral injury was then induced by MCAO/Re after six weeks. After 24 h of MCAO/Re the MLN (10 mg/kg) was administered orally for 14 days. Serum and tissue samples were extracted to determine malondialdehyde (MDA), reduced glutathione (GSH), nitric oxide (NO), interleukin-1β (IL-1β), and the tumor necrosis factor- α (TNF-α). Part of the brain tissue was kept in formalin for pathological and immunohistochemical studies to determine nuclear factor kappa B (NF-kB) and cyclooxygenase-2 (COX-2) immune reactivity. Findings/Results: MCAO/Re in STZ-induced hyperglycaemic rats caused a decrease in brain GSH, an increase in brain MDA, and NO was increased in both serum and brain tissue. Rats showed a prominent increase in the serum and brain inflammatory markers viz. IL-1β and TNF-α. Oral treatment with MLN (10 mg/kg) for two weeks reduced the brain levels of MDA, NO, IL-1β, and TNF-α. Impressive amelioration in pathological findings, as well as a significant decrease in NF-kB and COX2 immune stained cells of the cerebral cortex, hippocampus, and cerebellum, occurred after treatment with MLN. It also succeeded to suppress the exacerbation of damage in the brain of hyperglycaemic rats. Conclusion and implications: Daily intake of MLN attenuates the exacerbation of cerebral ischemic injury in a diabetic state.
[ABSTRACT]  [HTML Full text]  [PDF]  [Mobile Full text]  [EPub]  [Sword Plugin for Repository]Beta

1, 5-dicaffeoylquinic acid, an α-glucosidase inhibitor from the root of Dorema ammoniacum D. Don p. 429
Nikdokht Etemadi-Tajbakhsh, Mohammad-Ali Faramarzi, Mohammad-Reza Delnavazi
Background and purpose: Dorema ammoniacum D. Don (Apiaceae family) is a perennial plant whose oleo- gum resin is used as a natural remedy for various diseases, especially chronic bronchitis, and asthma. In the present study, hydromethanolic extract of D. ammoniacum root was subjected to phytochemical analyses and a-glucosidase inhibitory potentials of the isolated compounds were assessed. Experimental approach: Silica gel (normal and reversed phases) and Sephadex® LH-20 column chromatographies were used for the isolation and purification of the compounds. Structures of the compounds were characterized by 1D and 2D nuclear magnetic resonance (NMR) techniques. All the isolated compounds were assessed for their in vitro a-glucosidase inhibitory activity in comparison with acarbose, a standard drug. Findings/Results: Two phloroacetophenone glycosides; echisoside (1) and pleoside (2), along with dihydroferulic acid-4-O-β-D-glucopyranoside (3), and β-resorcylic acid (4), and two caffeoylquinic acid derivatives; chlorogenic acid (5) and 1, 5-dicaffeoylquinic acid (cynarin, 6) were isolated. Among the isolated compounds, the α-glucosidase inhibitory effect of 1,5-dicaffeoylquinic acid was found as 76.9% of the acarbose activity at 750 μM (IC50 value of acarbose). Conclusion and implications: Considerable α-glucosidase inhibitory effect of 1,5-dicaffeoylquinic acid makes it an appropriate candidate for further studies in the development of new natural antidiabetic drugs.
[ABSTRACT]  [HTML Full text]  [PDF]  [Mobile Full text]  [EPub]  [Sword Plugin for Repository]Beta

The challenging nature of primary T lymphocytes for transfection: Effect of protamine sulfate on the transfection efficiency of chemical transfection reagents p. 437
Ilnaz Rahimmanesh, Mehdi Totonchi, Hossein Khanahmad
Background and purpose: The optimization of an effective non-viral gene delivery method for genetic manipulation of primary human T cells has been a major challenge in immunotherapy researches. Due to the poor transfection efficiency of conventional methods in T cells, there has been an effort to increase the transfection rate in these cells. Protamine is an FDA-approved compound with a documented safety profile that enhances DNA condensation for gene delivery. Experimental approach: In this study, the effect of protamine sulfate on the transfection efficiency of standard transfection reagents, was evaluated to transfect primary human T cells. In this regard, pre-condensation of DNA was applied using protamine, and the value of the zeta potential of DNA/protamine/cargo complexes was determined. T cells were transfected with DNA/protamine/cargo complexes. The transfection efficiency rate was evaluated by flow cytometry. Also, the green fluorescent protein expression level and cytotoxicity of each complex were identified using real-time polymerase chain reaction and MTT assay, respectively. Findings/Results: Our results demonstrated that protamine efficiently increases the positive charge of DNA/cargo complex without any cytotoxic effect on the primary human T cells. We observed that the transfection efficiency in DNA/protamine/ Lipofectamine® 2000 and DNA/protamine/TurboFect™ was 87.2% and 78.9%, respectively, while transfection of T cells by Lipofectamine® 2000 and TurboFect™ would not result in sufficient transfection. Conclusion and implications: Protamine sulfate enhanced the transfection rate of T cells; and could be a promising non-viral gene delivery method to achieve a safe, rapid, cost-effective, and efficient system which will be further applied in gene therapy and T cells manipulation methods.
[ABSTRACT]  [HTML Full text]  [PDF]  [Mobile Full text]  [EPub]  [Sword Plugin for Repository]Beta

Dextromethorphan improved cyclosporine-induced depression in mice model of despair p. 447
Azadeh Mesripour, Mojgan Golbidi, Valiollah Hajhashemi
Background and purpose: Cyclosporine (Cyc) is a calcineurin inhibitor used in immunosuppressive therapy that may cause psychological problems such as depression. Previous investigations have shown the positive antidepressant effects of dextromethorphan (Dxt). Therefore, the aim of this study was the evaluation of the Dxt effect on Cyc-induced depression in an animal model of despair in two separate cohorts. Experimental approach: Male albino mice were used, first total activity was evaluated by the locomotor test, and then after that, the immobility time during the forced swimming test was measured as an indicator of depression. Cyc, Dxt, and fluoxetine (the reference antidepressant drug) were all administered IP. Tests were performed either 4 h after injection (cohort 4 h) or in separate groups 24 h after injection (cohort 24 h). Findings/Results: Cyc reduced total activity measured after 4 h in the locomotor test and it was normalized after 24 h. Immobility time dose-dependently increased during the forced swimming test and remained so after 24 h (cohort 24 h; Cyc 10, 20, and 40 mg/kg, 157 ± 22, 180 ± 8, and 228 ± 4 s, respectively; Cyc 40 mg/kg P < 0.001 vs control 142 ± 13 s) that indicated Cyc induced depressive-like behavior. Dxt (30 mg/kg) like fluoxetine reduced the immobility time when co-administered with Cyc compared with Cyc and remained effective after 24 h (cohort 24 h; 120 ± 30, P < 0.001 vs Cyc 40 mg/kg alone). Conclusion and implications: Dxt was a useful drug for preventing Cyc-induced depression that remained effective for 24 h in mice. Since interpretation from animal studies to humans must be done with caution further clinical studies on the effect of Dxt in patients suffering from psychological side effects of Cyc may be reasonable.
[ABSTRACT]  [HTML Full text]  [PDF]  [Mobile Full text]  [EPub]  [Sword Plugin for Repository]Beta

Synthesis, cytotoxic evaluation, and molecular docking studies of some new 1, 3, 4-oxadiazole-based compounds p. 454
Farshid Hassanzadeh, Elham Jafari, Mohammadreza Zarabi, Ghadamali Khodarahmi, Golnaz Vaseghi
Background and purpose: Oxadiazole-derived compounds have been shown to have a wide range of pharmacological activities. 2, 5-Disubstituted 1, 3, 4-oxadiazole derivatives have occupied a specific place in the design of anti-proliferative agents. In the present work a series of 2, 5-disubstituted 1, 3, 4-oxadiazoles derivatives containing amide group has been synthesized via a two-step reaction. Experimental approach: A mixture of substituted carboxylic acid derivatives, semicarbazide, and phosphorus oxychloride in reflux condition yielded 2-amino-5-aryl-1, 3, 4-oxadiazole derivatives. Acylation of the amino group of the resultant oxadiazole with 6-chloronicotinoyl chloride in dry tetrahydrofuran/pyridine afforded the final products. The synthesized molecules were docked in the active sites of the epidermal growth factor receptor tyrosine kinase domain (PDB: 1M17) crystal structure to study the possible interactions with the active site. Cytotoxic activities of final products against HeLa and MCF-7 cells were also assessed by MTT assay. Findings/Results: Compounds IIb, IIc, and IIe had a considerable cytotoxic activity with IC50 values of 19.9, 35, and 25.1 μM, respectively against HeLa cells. The highest docking score was -7.89 kcal/mol for compound IIe. Conclusion and implications: Compound IIe exhibited remarkable cytotoxic activity against the two tested cell lines particularly HeLa cells which was in accordance with the in silico ΔG bind result but further evaluations are necessary to prove these findings.
[ABSTRACT]  [HTML Full text]  [PDF]  [Mobile Full text]  [EPub]  [Sword Plugin for Repository]Beta

Antinociceptive activity of Cnicus benedictus L. leaf extract: a mechanistic evaluation p. 463
Davoud Ahmadimoghaddam, Reihaneh Sadeghian, Akram Ranjbar, Zohreh Izadidastenaei, Saeed Mohammadi
Background and purpose: Cnicus benedictus, a medicinal herb, traditionally had been used for the treatment of stomachache pain. In this study, the possible efficacy of Cnicus benedictus leaf methanolic extract (CBHE) and also cnicin, one of its major constituents, was measured on pain. Experimental approach: In this study, pain assessment tests include writhing, tail-flick (TF), and formalin- induced paw licking test (FIPLT) were used. To understand the possible mediated anti-nociceptive mechanism of CBHE, the opioid mechanism(s), and involvement of the L-arginine/ nitric oxide/cGMP/ATP-sensitive potassium channel pathway (LNCaP) were scrutinized. Findings/Results: In TF and writhing tests, CBHE (150 and 300 mg/kg, i.p) remarkably exhibited an anti-nociceptive effect compared to that of the control. Furthermore, CBHE (150 and 300 mg/kg, i.p) in comparison with the control showed a noteworthy anti-nociceptive effect (P < 0.01) in the tonic phase of FIPLT. In the writhing test, administration of selective opioid antagonist (naltrindole, nor-binaltorphimine, and naloxonazine) attenuated the anti-nociceptive effect of CBHE (300 mg/kg) in comparison with control. Moreover, pre-treatment with Nω-nitro-L-arginine methyl ester hydrochloride, L-arginine hydrochloride, and glibenclamide significantly blocked the CBHE (300 mg/kg) anti-nociception (P < 0.05) while administration of sodium nitroprusside remarkably potentiated (P < 0.05) the antinociception induced by CBHE in the tonic phase of the FIPLT. Besides, cnicin (30 mg/kg) showed noteworthy anti-nociceptive effects in writhing, TF, and FIPLT paradigms. Conclusion and implications: Taken together, we elucidate that both CBHE and cnicin demonstrated antinociceptive effects in behavioral tests. The possible mechanisms of CBHE antinociception may involve in various neural signaling and modulatory pathways including LNCaP and opioidergic mechanisms.
[ABSTRACT]  [HTML Full text]  [PDF]  [Mobile Full text]  [EPub]  [Sword Plugin for Repository]Beta

Bioassay-guided isolation of glycolipids from the seaweed Gracilaria corticata p. 473
Vajihe Akbari, Mahshid Abedi, Afsaneh Yegdaneh
Background and purpose: In some countries, seaweeds are famous traditional food which contain different types of secondary metabolites. These marine organisms have several bioactive secondary metabolites. The aim of this study was to perform bioassay-guided isolation of glycolipids from a Persian Gulf seaweed Gracilaria corticata J.Agardh. Experimental approach: G. corticata was collected from the Persian Gulf. The plant was extracted by maceration with methanol-ethyl acetate solvent. The extract was partitioned by the Kupchan method to yield n-hexane, dichloromethane, butanol, and water partitions. The most active partition found in the cytotoxicity assay was further fractionated using medium pressure liquid chromatography and high-performance liquid chromatography (HPLC) methods to yield two pure compounds. The structures of the isolated compounds were elucidated using various spectroscopic methods. The cytotoxic activities of all fractions were also tested. sFindings/Results: n-hexane and dichloromethane partitions exhibited higher and significant cytotoxicity against the HeLa cell line with IC50s of 117.41 and 291.38 μg/mL, respectively. The cytotoxic effects of nine fractions of the n-hexane partition against HeLa and HUVEC cells were also ranging from 96.33 to 243.56 μg/mL and 85.38 to 290.5 μg/mL, respectively. Two sulfoquinovosyldiacylglycerides were isolated and their structures were elucidated. Conclusion and implications: From the spectral characteristics, the isolated compound from the extract was confirmed to be a-D-glucopyranosyl-1,2-O-diacyl-glycerols with moderate cytotoxic activity.
[ABSTRACT]  [HTML Full text]  [PDF]  [Mobile Full text]  [EPub]  [Sword Plugin for Repository]Beta

Satureja khuzistanica Jamzad essential oil prevents doxorubicin-induced apoptosis via extrinsic and intrinsic mitochondrial pathways p. 481
Ali Al Seyedan, Omid Dezfoulian, Masoud Alirezaei
Background and purpose: In addition to hepato-cardiotoxicity, doxorubicin (DOX) also induces nephrotoxicity which is considered as the limiting factor for this drug in cancer therapy. The effect of carvacrol, the main active ingredient of Satureja khuzistanica Jamzad essential oil (SKEO), in the amelioration of DOX- induced cardiotoxicity is well established. The aim of the present study was to evaluate the possible protective effects of SKEO against DOX-induced nephrotoxicity. Experimental approach: SKEO was intraperitoneally administered at 50, 100, and 200 mg/kg to male Wistar rats for 12 consecutive days. Five groups of animals including negative control (saline), vehicle (Tween® 20), SKEO50, DOX (at 8th day of treatment), and SKEO50 + DOX were assessed. Findings/Results: Creatinine, urea concentrations, and caspase-3 activity significantly elevated in the serum of DOX treated group in contrast to other groups after injection of a single dose of DOX (20 mg/kg i.p.), however, SKEO reduced glutathione peroxidase and caspase-3 activity against other groups while SKEO + DOX was also significantly reduced caspase-3 activity against DOX group. Other biochemical markers changes were not significant. Immunohistochemical assessment unveiled that SKEO + DOX improved the activity of Bcl-2 family proteins (Bax and Bcl-2) and caspase-8 protein to the advantage of cell survival in both intrinsic mitochondrial and extrinsic pathway down streamed to the terminal caspase-3 apoptotic molecule., Conclusion and implications: It was concluded that SKEO could have influential effects against apoptosis induced by DOX, but not improperly ameliorate oxidative stress.
[ABSTRACT]  [HTML Full text]  [PDF]  [Mobile Full text]  [EPub]  [Sword Plugin for Repository]Beta

Modified Riceberry rice extract suppresses melanogenesis-associated cell differentiation through tyrosinase-mediated MITF downregulation on B16 cells and in vivo zebrafish embryos p. 491
Teerapat Rodboon, Sasithorn Sirilun, Seiji Okada, Ryusho Kariya, Thapana Chontananarth, Prasit Suwannalert
Background and purpose: Excessive melanin production caused by overactive tyrosinase (TYR) enzyme results in several dermatological problems. The TYR inhibitor, derived from metabolite changes during fermentation, has been well recognized for pigmentation control. Experimental approach: This study is interested in alternative anti-melanogenic agents from bio-modified Riceberry rice through fermentation. Modified Riceberry rice extract (MRB) was evaluated for its cytotoxicity, melanin content, melanin excretion, and TYR activity in B16 cells. TYR and their melanogenesis-related molecules such as TYR-related proteins-1 and -2, and microphthalmia-associated transcription factor (MITF) were determined. The anti-melanogenic activity and toxicity were also tested using the embryonic zebrafish model. Furthermore, comprehensive genotoxicity testing was verified by cytokinesis-block micronucleus cytome assay. Findings/Results: The study found that non-cytotoxic concentrations of MRB at 20 and 40 mg/mL inhibited melanogenesis and melanin excretion by interfering B16 cell morphology. Cellular TYR enzymatic activity was also suppressed in the treated cells. The mRNA transcription and protein expression levels of TYR and MITF decreased by dose-dependent and time-dependent manners with MRB treatment. In the animal model, MRB was found to be safe and potent for melanogenesis-related TYR inhibition in embryonic zebrafish at 20 and 30 mg/mL. The toxicity of effective doses of MRB showed no genotoxicity and mutagenicity. Conclusion and implications: This study suggests that MRB has anti-melanogenesis potential through TYR and its-related protein inhibitions. MRB is also safe for applications and maybe a promising anti-melanogenic agent for hyperpigmentation control.
[ABSTRACT]  [HTML Full text]  [PDF]  [Mobile Full text]  [EPub]  [Sword Plugin for Repository]Beta

Subscribe this journal
Submit articles
Most popular articles
Joiu us as a reviewer
Email alerts
Recommend this journal